

## Theoretische Informatik

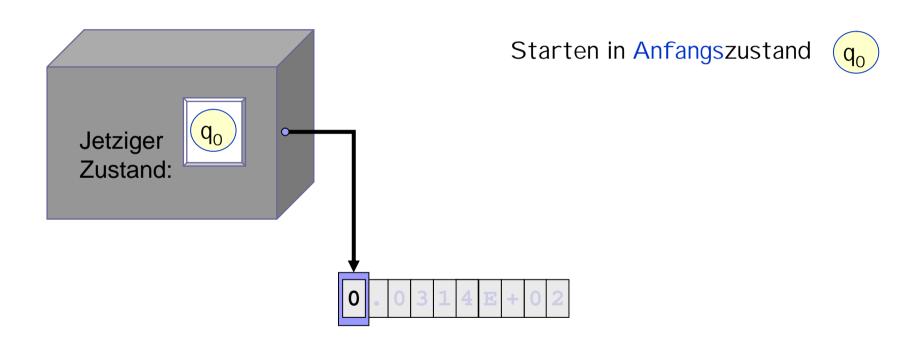
Deterministische Automaten

# Inhalt

- 1. Deterministische Akzeptoren
  - n Grundbegriffe
  - n Sprache eines Automaten
  - n Implementierung
  - n Komplement, Produkte
  - n Homomorphismen von Automaten
  - n Faktorautomat
  - n Homomorphiesatz
- 2. Minimierung und Grenzen von Automaten
  - n Trennbarkeit
  - n Nerode-Lemma
  - n Pumping Lemma
  - n nicht reguläre Sprachen
  - n Minimierung

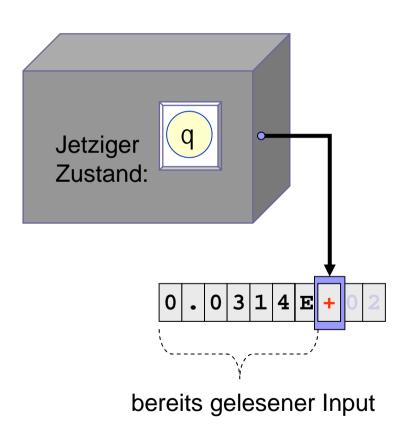


### n sollen Sprache erkennen





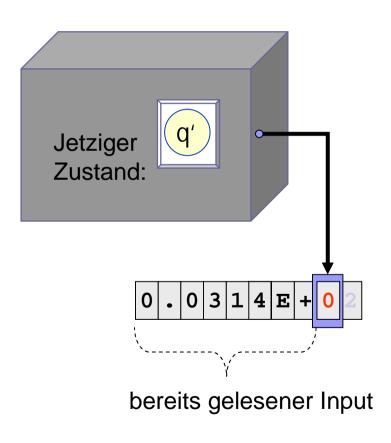
### n sollen Sprache erkennen



Starten in Anfangszustand



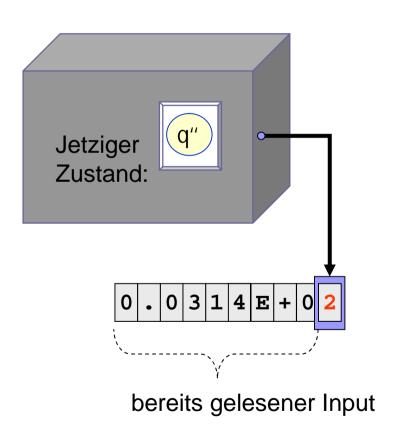
### n sollen Sprache erkennen



Starten in Anfangszustand  $q_0$ abhängig von gegenwärtigem Zustand gelesenem Zeichen neuer Zustand  $q' = \delta(q,a)$ 



### n sollen Sprache erkennen

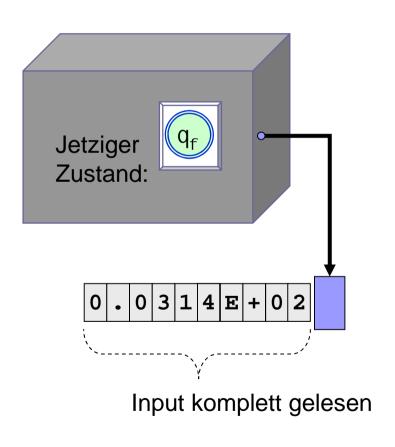


Starten in Anfangszustand  $q_0$ abhängig von gegenwärtigem Zustand gelesenem Zeichen neuer Zustand  $q' = \delta(q,a)$ 

# THE RESERVE THE PARTY OF THE PA

### Automaten

### n sollen Sprache erkennen



Starten in Anfangszustand

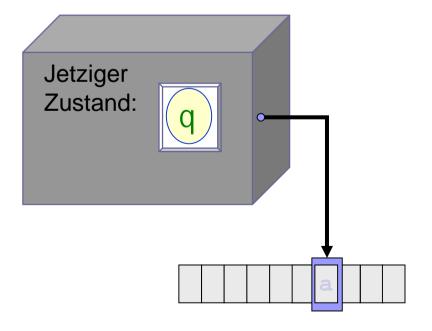


abhängig von gegenwärtigem Zustand gelesenem Zeichen q' =  $\delta(q,a)$ 

Wenn Wort w komplett eingelesen, wird es akzeptiert, falls Automat in einem Endzustand  $q_f \in F$  ist.



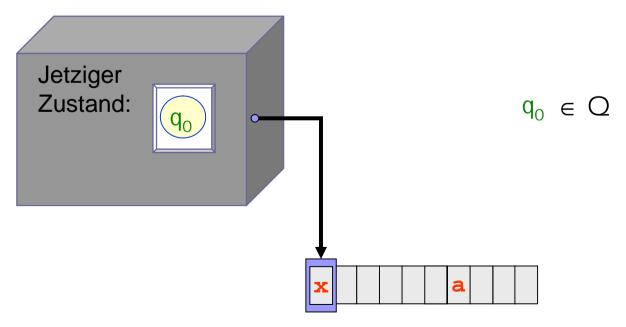
Sei  $\Sigma$  ein Alphabet. Ein deterministischer endlicher  $\Sigma$ -Automat A besteht aus  ${\bf Q} \qquad \qquad - \mbox{ einer endlichen Menge von Zuständen}$ 



$$Q \in Q$$



Sei  $\Sigma$  ein Alphabet. Ein deterministischer endlicher  $\Sigma$ -Automat A besteht aus  $Q \qquad \qquad \text{- einer endlichen Menge von Zuständen}$   $q_0 \in Q \qquad \qquad \text{- einem Anfangszustand}$ 





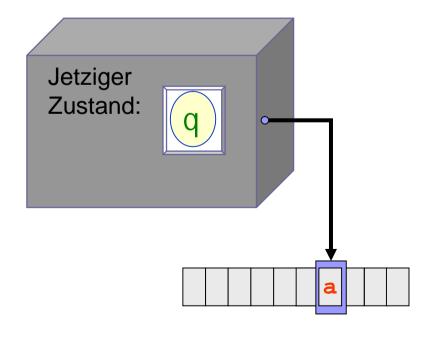
Sei  $\Sigma$  ein Alphabet. Ein deterministischer endlicher  $\Sigma$ -Automat A besteht aus

Q

 $\delta: Q \times \Sigma \to Q$ 

 $q_0 \in Q$ 

- einer endlichen Menge von Zuständen
- Transitionsfunktion
- einem Anfangszustand



neuer Zustand  $\delta(q,a)=q'$ 



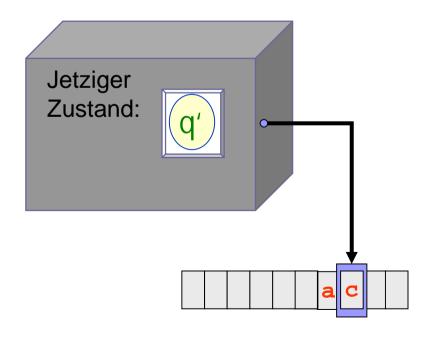
Sei  $\Sigma$  ein Alphabet. Ein deterministischer endlicher  $\Sigma$ -Automat A besteht aus

Q

 $\delta: Q \times \Sigma \to Q$ 

 $q_0 \in Q$ 

- einer endlichen Menge von Zuständen
- Transitionsfunktion
- einem Anfangszustand



neuer Zustand  $\delta(q,a)=q'$ 



Sei  $\Sigma$  ein Alphabet. Ein deterministischer endlicher  $\Sigma$ -Automat A besteht aus

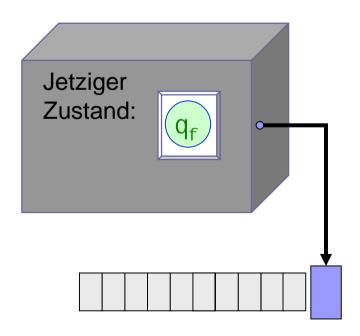
Q

$$\delta: Q \times \Sigma \rightarrow Q$$

$$q_0 \in Q$$

 $\mathsf{F} \subseteq \mathsf{Q}$ 

- einer endlichen Menge von Zuständen
- Transitionsfunktion
- einem Anfangszustand
- einer Menge von Endzustände



$$q_f \in F \subseteq Q$$



Sei  $\Sigma$  ein Alphabet. Ein deterministischer endlicher  $\Sigma$ -Automat A besteht aus

Q

 $\delta: Q \times \Sigma \to Q$ 

 $q_0 \in Q$ 

 $\mathsf{F} \subseteq \mathsf{Q}$ 

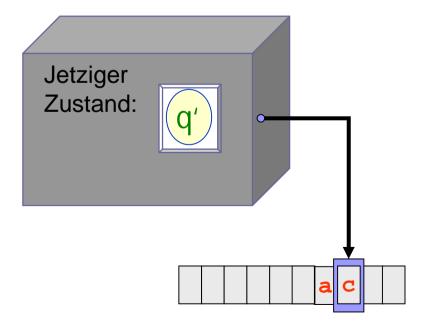
- einer endlichen Menge von Zuständen

- Transitionsfunktion

- einem Anfangszustand

- einer Menge von Endzustände

Schreibweise:  $A = (O, \Sigma, \delta, q_0, F)$ 

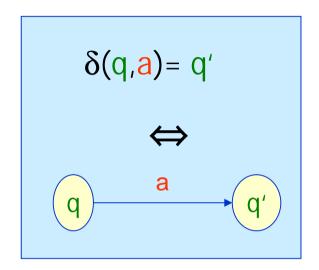


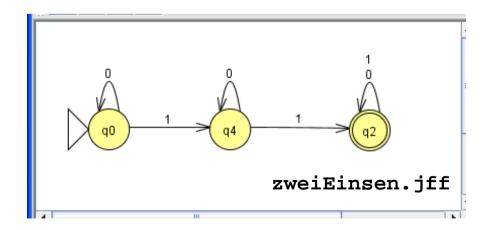
neuer Zustand  $\delta(q,a)=q'$ 



## Zustandsübergangsgraphen

- n Graphische Notation für Automaten
  - Zustände Knoten
  - ein Anfangszustand  $q_0 \in Q$
  - Zustandsübergänge beschriftete Kanten
  - eine Menge von Endzuständen F ⊆ Q
- n Wort wird akzeptiert, falls es
  - beginnend im Anfangszustand
  - den Automaten in Endzustand überführt





Hier z.B.:  

$$Q = \{q_0, q_4, q_2\}$$
  
 $F = \{q_2\}$   
 $\delta(q_0, 0) = q_0$ 

 $\delta(q_0, 1) = q4$ 

# THE PARTY OF THE P

## BinInteger-Automat

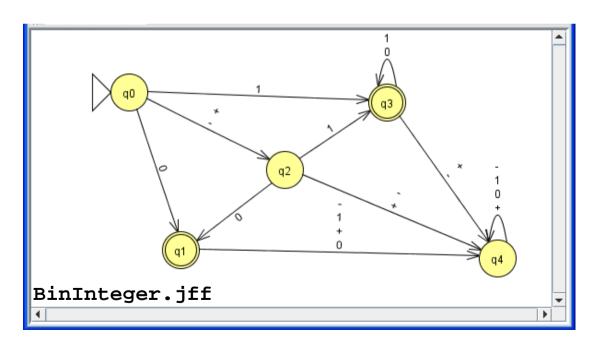
- n Automat über dem Alphabet  $\Sigma = \{0,1,+,-\}$ .
- n Erkennt alle gültigen Binären Integer
  - optionales Vorzeichen
  - keine führenden 0-en erlaubt
- n Entspricht dem regulären Ausdruck
  - [+,-]? (0 | 1(0|1)\*)

#### q<sub>4</sub> "Error"-Zustand

- nicht akzeptierend
- kann nicht verlassen werden

#### Automat:

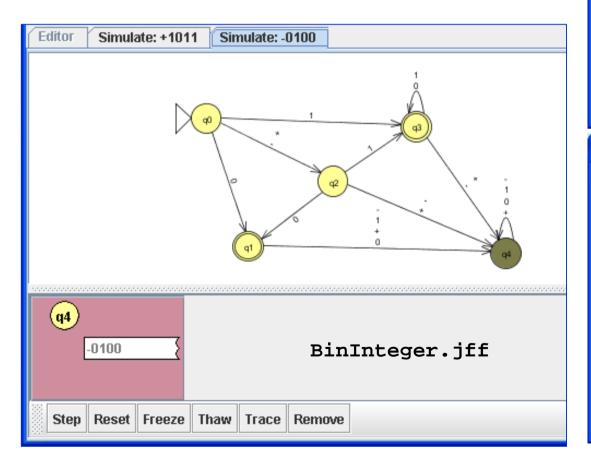
Q={  $q_0$ ,  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_4$ }  $q_0$  ist Anfangszustand F={  $q_1$ , $q_3$ } Endzustände





## Akzeptanz

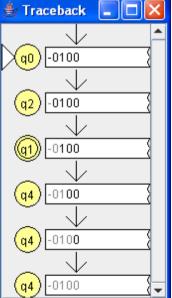
n Ein Wort  $w \in \Sigma^*$  wird akzeptiert, falls es vom Anfangszustand in einen Endzustand führt



JFLAP output

+1011 führt zu q<sub>3</sub>∈ F

 $\Rightarrow$  akzeptiert



🖢 Traceback 🔲 🗖 🔀

<mark>(q2)</mark>|+1011

+1011

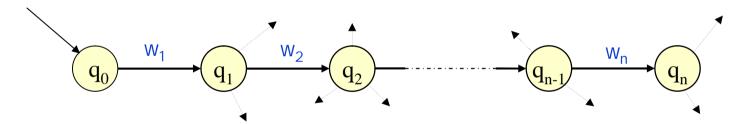
-0100 führt zu q<sub>4</sub>∉ F ⇒ nicht

⇒ nicht akzeptiert



### Läufe

- n Wort beschreibt Weg durch den Automaten
  - Wort  $w=w_1w_2...w_n$  ist Fahrplan
  - Jedes Wort ist gültiger Fahrplan, weil  $\delta(q,a)$  für alle q und alle a definiert
- n Ein Lauf ist die Folge der dabei besuchten Zustände
  - "  $W_i 2 \Sigma$



Lauf für das Wort  $w = w_1 w_2 ... w_n$ 

Beginnt der Lauf im Anfangszustand und endet er in einem Endzustand, so wird das zugehörige Wort akzeptiert



#### $_{\mbox{\scriptsize n}}$ Ausdehnung von $\delta$ auf Worte

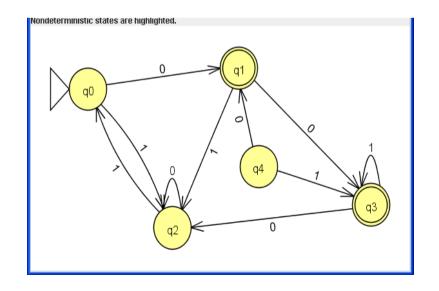
δ\*

```
n \delta^*: Q \times \Sigma^* \to Q definiert durch

" \delta^*(q, \epsilon) = q // leeres Wort

" \delta^*(q, a.u) = \delta^*(\delta(q,a),u)) // w = a.u
```

- n A akzeptiert  $w \Leftrightarrow \delta^*(q_0, w) \in F$
- n Ein Zustand q heißt erreichbar, falls es ein Wort w gibt mit  $\delta^*(q_0, w) = q$



$$\delta^*(q_0, 1100) = q_3$$
  
 $\delta^*(q_4, 1010) = q_1$ 

q<sub>4</sub> ist nicht erreichbar



## Sprache eines Automaten

Die Sprache eines Automaten ist die Menge aller Worte, die er akzeptiert. Formal:

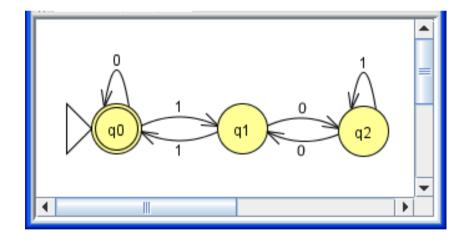
$$L(A) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$$

#### n Beobachtungen

$$\epsilon \in L(A) \Leftrightarrow q_0 \in F$$

 nicht erreichbare Zustände können entfernt werden. Für den restlichen Automat A' gilt :

$$L(A) = L(A')$$



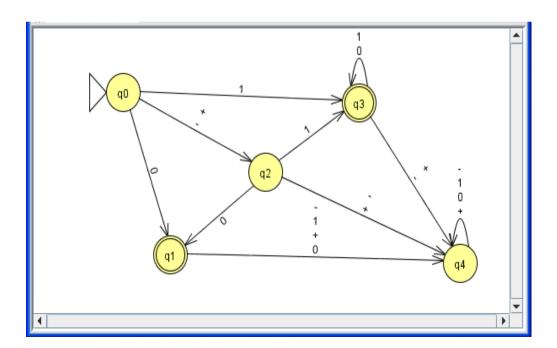
Beispiel: 
$$w \in L(A) \Leftrightarrow$$

$$w = \varepsilon \quad oder \quad (w)_2 \mod 3 = 0$$



## Implementierung

- n Automaten sind leicht zu implementieren
- n  $\delta: Q \times \Sigma \to Q$  als Tabelle
- $n \quad F \ \subseteq Q$
- $n q_0 \in Q$

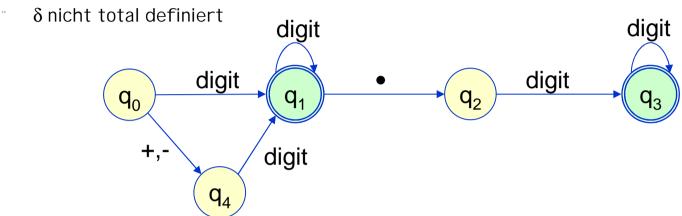


$$F = \{ q_1, q_3 \}$$
  
init =  $q_0$ .

| δ     | 0     | 1     | +     | -     |
|-------|-------|-------|-------|-------|
| $q_0$ | $q_1$ | $q_3$ | $q_2$ | $q_2$ |
| $q_1$ | $q_4$ | $q_4$ | $q_4$ | $q_4$ |
| $q_2$ | $q_1$ | $q_3$ | $q_4$ | $q_4$ |
| $q_3$ | $q_3$ | $q_3$ | $q_4$ | $q_4$ |
| $q_4$ | $q_4$ | $q_4$ | $q_4$ | $q_4$ |

# Vervollständigung

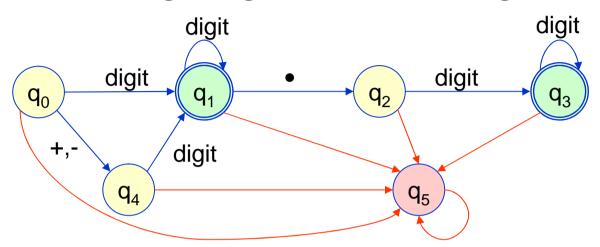
#### n Noch kein DFA



| δ     | +     | -     | Ziffer         | •     |
|-------|-------|-------|----------------|-------|
| $q_0$ | $q_4$ | $q_4$ | q <sub>1</sub> |       |
| $q_1$ |       |       | $q_1$          | $q_2$ |
| $q_2$ |       |       | $q_3$          |       |
| $q_3$ |       |       | $q_3$          |       |
| $q_4$ |       |       | $q_1$          |       |

|       | Endzustand? |
|-------|-------------|
| $q_0$ | false       |
| $q_1$ | true        |
| $q_2$ | false       |
| $q_3$ | true        |
| $q_4$ | false       |

## Vervollständigung durch Fangzustand



| δ     | +                     | -                     | Ziffer | •                     |
|-------|-----------------------|-----------------------|--------|-----------------------|
| $q_0$ | $q_4$                 | $q_4$                 | $q_1$  | $q_5$                 |
| $q_1$ | <b>q</b> <sub>5</sub> | $q_5$                 | $q_1$  | $q_2$                 |
| $q_2$ | <b>q</b> <sub>5</sub> | <b>q</b> <sub>5</sub> | $q_3$  | <b>q</b> <sub>5</sub> |
| $q_3$ | <b>q</b> <sub>5</sub> | $q_5$                 | $q_3$  | $q_5$                 |
| $q_4$ | <b>q</b> <sub>5</sub> | $q_5$                 | $q_1$  | $q_5$                 |
| $q_5$ | $q_5$                 | $q_5$                 | $q_5$  | $q_5$                 |

|       | Endzustand? |
|-------|-------------|
| $q_0$ | false       |
| $q_1$ | true        |
| $q_2$ | false       |
| $q_3$ | true        |
| $q_4$ | false       |
| $q_5$ | false       |

© H. Peter Gumm, Philipps-Universität Marburg

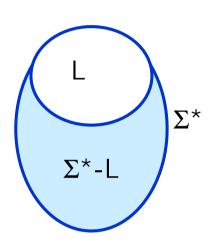
# THE PARTY OF THE P

## Komplementautomat

n Zu jedem Automaten A =  $(Q, \Sigma, \delta, q_0, F)$  gibt es einen Automaten

$$\bar{A}$$
 mit  $L(\bar{A}) = \Sigma^* - L(A)$ .

Beweis: Wähle  $\bar{A} := (Q, \Sigma, \delta, q_0, Q-F)$ . Dann gilt:



#### OOHESS OOHES OOHESS OOHES OOHES

### Produktautomat

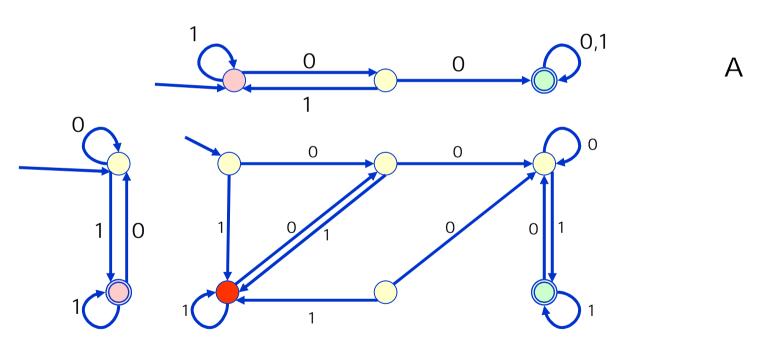
 $A = (P, \Sigma, \delta_A, p_0, F_A) \quad \text{und} \quad B = (Q, \Sigma, \delta_B, q_0, F_B) \text{ seien Automaten}$ 

n 
$$A \times B = (P \times Q, \Sigma, \delta_{A \times B}, (p_0, q_0), F_A \times F_B)$$

 $\delta_{A\times B}((p,q),a) := (\delta_A(p,a), \delta_B(q,a))$ 

// 1.Komp. in  $F_A$ , 2. in  $F_B$ 

// komponentenweise



В



# THE STATE OF THE S

### Produktautomat

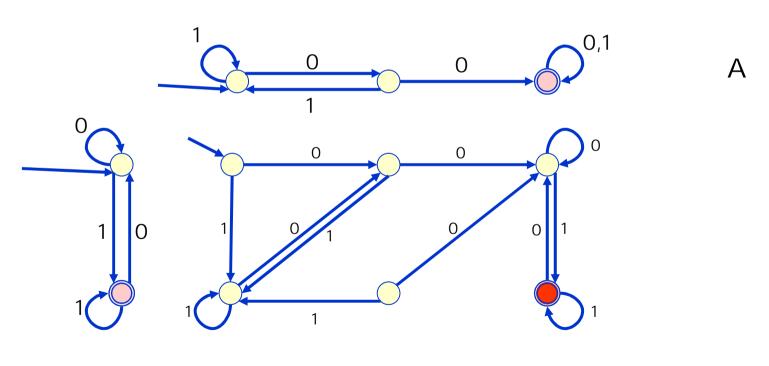
 $A = (P, \Sigma, \delta_A, p_0, F_A) \quad \text{und} \quad B = (Q, \Sigma, \delta_B, q_0, F_B) \text{ seien Automaten}$ 

n 
$$A \times B = (P \times Q, \Sigma, \delta_{A \times B}, (p_0, q_0), F_A \times F_B)$$

 $\delta_{A\times B}((p,q),a) := (\delta_A(p,a), \delta_B(q,a))$ 

// 1.Komp. in  $F_A$ , 2. in  $F_B$ 

// komponentenweise



# THE STATE OF THE S

### Produktautomat

```
A = (P, \Sigma, \delta_A, p_0, F_A) und B = (Q, \Sigma, \delta_B, q_0, F_B) seien Automaten
n A×B = (P×Q, \Sigma, \delta_{A\times B}, (p<sub>0</sub>,q<sub>0</sub>), F_A\times F_B)
                                                                                                // 1.Komp. in F_{\Delta}, 2. in F_{B}
                \delta_{A\times B}((p,q),a) := (\delta_A(p,a), \delta_B(q,a))
                                                                                                // komponentenweise
     <u>Lemma</u>: \delta_{A\times B}^*((p,q),w) = (\delta_A^*(p,w), \delta_B^*(q,w)) für alle w \in \Sigma^*.
      Beweis: (Übung, Induktion über w)
    L(A \times B) = L(A) \cap L(B)
      Beweis: w \in L(A \times B) \Leftrightarrow \delta_{A \times B}^*((p_0, q_0), w) \in F_A \times F_B // Def. F_{A \times B}
                                  \Leftrightarrow (\delta_A^*(p_0,w), \delta_B^*(q_0,w)) \in F_A \times F_B // Lemma
                                  \Leftrightarrow \delta_A^*(p_0, w) \in F_A \text{ und } \delta_B^*(q_0, w) \in F_B // komponentenweise
                                  \Leftrightarrow W \in L(A) \cap L(B)
                                                                                                // Def. L(A), L(B), ∩
```

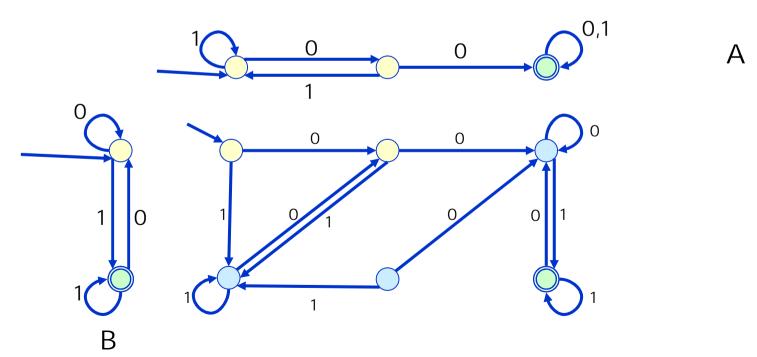


### Parallelität und Produktautomat

- n Parallele Komposition
  - A und B laufen gleichzeitig
  - " synchron
- n Akzeptiere Input, falls
  - beide Automaten in Endzustand
  - mind. ein Automat in Endzustand:
    - n  $F=(F_A \times Q) \cup (P \times F_B)$



$$\Rightarrow$$
 L(A)  $\cup$  L(B)

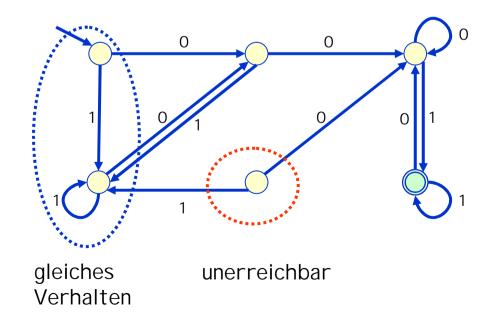




## Produktautomat

Produktkonstruktion liefert nicht unbedingt den einfachsten Automat

- n Hier:
  - ein Zustand nicht erreichbar
- entfernen
- zwei Zustände verhaltensgleich

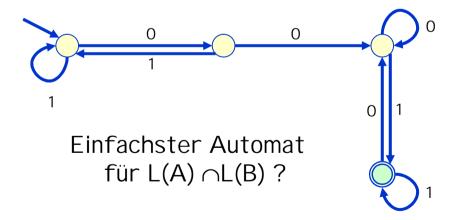




### Produktautomat

Produktkonstruktion liefert nicht unbedingt den einfachsten Automat

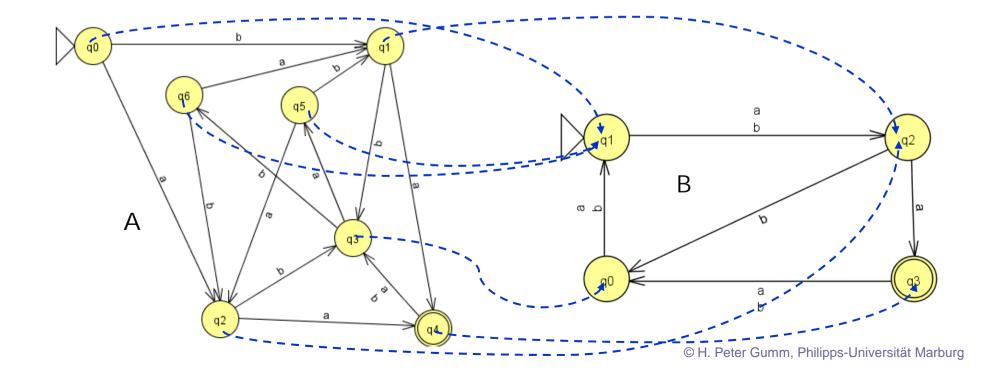
- n Hier:
  - ein Zustand nicht erreichbar
- entfernen
- zwei Zustände verhaltensgleich
- verschmelzen





## Homomorphismus

 $A=(Q_A, \Sigma, \delta_A, q_A, F_A)$  und  $B=(Q_B, \Sigma, \delta_B, q_B, F_B)$  Automaten Abbildung  $\phi: Q_A \rightarrow Q_B$  heißt Homomorphismus, falls





## Homomorphie ⇒ Sprachäquivalenz

Ist  $\varphi: A \to B$  ein Homomorphismus, dann gilt L(A)=L(B)

Lemma: Es gilt  $\varphi(\delta_A^*(q,w)) = \delta_B^*(\varphi(q),w)$ . Beweis (Übung) Induktion über Aufbau von w.

#### Beweis des Satzes:

$$W \in L(A)$$

$$\Leftrightarrow \delta_{A}^{*}(q_{A}, w) \in F_{A}$$
 // Def. von L(A)

$$\Leftrightarrow \varphi \left( \delta_{A}^{*}(q_{A}, w) \right) \in F_{B}$$
 //  $\varphi$  Homomorph.

$$\Leftrightarrow \delta_B^*(\phi(q_A), w) \in F_B$$
 // Lemma.

$$\Leftrightarrow \delta_B^*(q_B, w) \in F_B$$
 //  $\phi$  Homomorph.

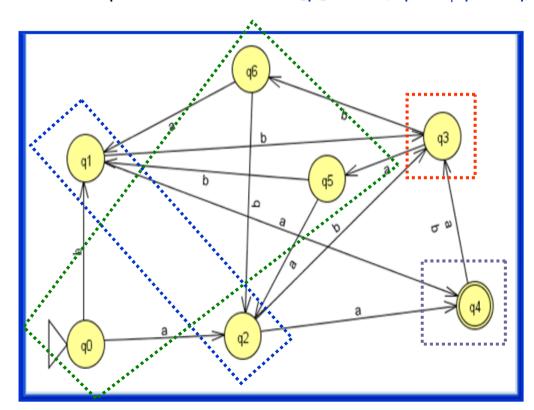
$$\Leftrightarrow W \in L(B)$$

## Kongruenzen

- Eine Kongruenzrelation  $\Theta$  auf  $A=(Q,\Sigma,\delta,q_0,F)$  ist
  - eine Äquivalenzrelation auf Q
  - mit  $\forall$   $(p,q) \in \Theta$ : 1.  $(p \in F \Leftrightarrow q \in F)$ 

    - 2.  $\forall a \in \Sigma$ :  $\delta(p,a) \Theta \delta(q,a)$

Äquivalenzklassen:  $[p]\Theta := \{ q \in Q \mid p \Theta q \}$ 



#### Beispiel:

Im gezeigten Automaten definiert die Klasseneinteilung

$$\{\{q_0,q_5,q_6\},\{q_1,q_2\},\{q_3\},\{q_4\}\}$$
 eine Kongruenzrelation.

# THE PARTY OF THE P

## Aufgaben

- n Homomorphismen erhalten Läufe:
  - Ist  $\varphi : A \rightarrow B$  Homomorphismus, dann gilt auch für alle  $\varphi \in Q_A$  und alle  $\psi$  in  $\Sigma^*$ :

$$\varphi \delta_A^*(q, w) = \delta_B^*(\varphi(q), w)$$

- Hinweis: Induktion über Aufbau von w.
- n Komposition von Homomorphismen:
  - $\begin{array}{ll} A=(O_A,\Sigma,\delta_A,q_A,F_A), & B=(O_B,\Sigma,\delta_B,q_B,F_B) \text{ und } C=(O_C,\Sigma,\delta_C,q_C,F_C) \\ \phi:A\to B \text{ und } \psi:B\to C \text{ Homomorphismen.} \end{array}$

Dann ist die Hintereinanderausführung  $\psi \circ \phi : A \to C$  ein Homomorphismus

n Kerφist Kongruenz:

```
\phi:A\to B sei Homomorphismus, dann ist \ker \phi=\{\ (p,q)\in Q_A: \phi(p)=\phi(q)\ \} eine Kongruenzrelation.
```

n Fortsetzung auf Worte:

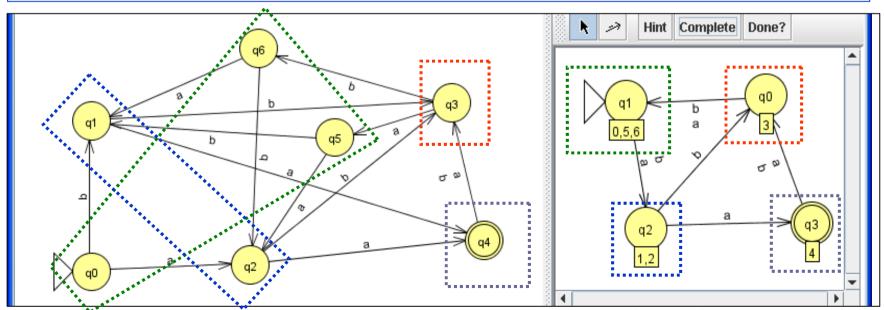
```
Ist \Theta Kongruenz, dann gilt für alle w \in \Sigma^*:

p \Theta q \Rightarrow \delta^*(p,w) \Theta \delta^*(q,w)
```



### **Faktorautomat**

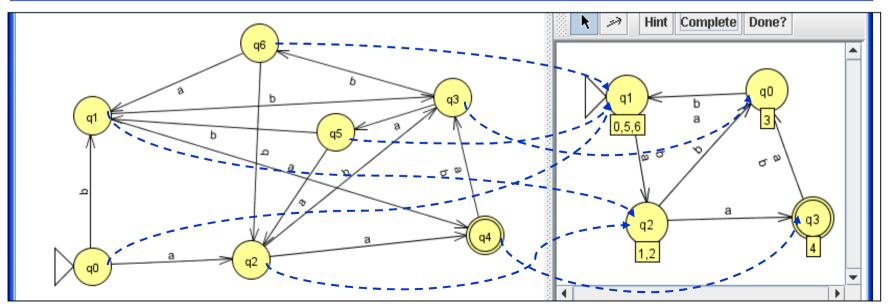
```
Sei \Theta eine Kongruenzrelation auf A=(Q, \Sigma, \delta, q_0, F), definiere: A/\Theta := (Q/\Theta, \Sigma, \delta_\Theta, q_\Theta, F_\Theta) mit Q/\Theta = \{ [q]\Theta \mid q \in Q \} q_\Theta := [q_0]\Theta F_\Theta := \{ [q_f]\Theta \mid q_f \in F \}  // wohldefiniert, weil \Theta Kongruenz und \delta_\Theta([q]\Theta, a) := [\delta(q,a)]\Theta // repräsentantenweise. // wohldefiniert, da \Theta Kongruenz
```





### **Faktorautomat**

```
Sei \Theta eine Kongruenzrelation auf A=(Q, \Sigma, \delta, q_0, F), definiere: A/\Theta := (Q/\Theta, \Sigma, \delta_\Theta, q_\Theta, F_\Theta) mit Q/\Theta = \{ [q]\Theta \mid q \in Q \} q_\Theta := [q_0]\Theta F_\Theta := \{ [q_f]\Theta \mid q_f \in F \}  // wohldefiniert, weil \Theta Kongruenz und \delta_\Theta([q]\Theta, a) := [\delta(q, a)]\Theta // repräsentantenweise. // wohldefiniert, da \Theta Kongruenz
```



# Homomorphiesatz

Satz: A Automat,  $\Theta$  Kongruenz. Dann definiert  $\pi_{\Theta} \colon A \to A/\Theta \quad \text{mit} \quad \pi_{\Theta}(q) := [q]\Theta$  einen Homomorphismus und es gilt  $\Theta = \ker \pi_{\Theta}$ .

Beweis: Wir rechnen die Homomorphieregeln nach

1. //  $\pi_{\Theta}$  erhält Startzustand:

$$\pi_{\Theta}(q_0) = [q_0]\Theta \hspace{1cm} // \hspace{1cm} \text{Definition } \pi_{\Theta}$$
 
$$= q_{\Theta} \hspace{1cm} // \hspace{1cm} \text{Def. von Startzustand in A/}\Theta$$

2.  $// \pi_{\Theta}$  erhält Endzustände

$$\begin{array}{ll} \mathsf{q}{\in}\,\mathsf{F}_\mathsf{A} & \Leftrightarrow \ [\mathsf{q}]\Theta \in \mathsf{F}_\Theta & \text{ // Def. Endzustände in A/}\Theta \\ & \Leftrightarrow \ \pi_\Theta(\mathsf{q}) \in \mathsf{F}_\Theta & \text{ // Definition } \pi_\Theta \end{array}$$

3.  $// \pi_{\Theta}$  erhält Transitionen

$$\begin{array}{ll} \pi_{\Theta}(\delta_{A}(q,a)) &= [\delta_{A}(q,a)]\Theta & \text{// Def. } \pi_{\Theta} \\ &= \delta_{\Theta}([q]\Theta,a) & \text{// Def. von } \delta_{\Theta} \text{ in A/}\Theta \end{array}$$

Schließlich:

$$(p,q) \in \ker \pi_{\Theta} \iff \pi_{\Theta}(p) = \pi_{\Theta}(q) \iff [p]\Theta = [q]\Theta \iff (p,q) \in \Theta$$

# Inhalt

- 1. Deterministische Akzeptoren
  - n Grundbegriffe
  - n Sprache eines Automaten
  - n Implementierung
  - n Komplement, Produkte
  - n Homomorphismen von Automaten
  - **n** Faktorautomat
  - n Homomorphiesatz
- 2. Minimierung und Grenzen von Automaten
  - n Trennbarkeit
  - n Nerode-Lemma
  - n Pumping Lemma
  - n nicht reguläre Sprachen
  - n Minimierung

## Ziel: Minimierung

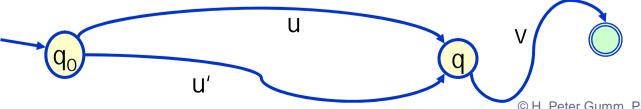
- n A Automat, Θ Kongruenz. Dann gilt L(A) = L(A/Θ).
  - Folgt aus dem vorigen Satz.
  - Wenn  $\Theta$  nicht trivial, dann hat A/ $\Theta$  weniger Zustände als A
  - Gesucht: Θ, so dass für möglichst viele  $p,q \in Q$  gilt:  $p \Theta q$ .
- n Gesucht:  $\Theta$ , so dass für möglichst viele p,q  $\in$  Q: p  $\Theta$  q.
  - Es muss da eine Grenze geben ...
- n Kriterium für  $(p,q) \notin \Theta$ ?
  - $\delta^*(p,w) \in F$ ,  $\delta^*(q,w) \notin F \Rightarrow (p,q) \notin \Theta$  // 2. Kongr.Bed.



#### Das "Gedächtnis" von Automaten

- n Jetzt menschelt es
  - keine Angst, wir werden bald wieder präziser
- n Angenommen, Automat A "will" ein Wort w erkennen.
  - Nachdem Anfangsteil u eingelesen ist, befindet er sich im Zustand  $q = \delta^*(q_0, u)$ .
  - Ob er den Rest v, und damit w = uv akzeptiert, hängt nur vom Zustand q ab.
- n q ist die einzige Information, die sich der Automat "merken" kann, nicht aber, wie er zu q gekommen ist.
  - " Konkret:

```
Wenn w = uv \in L und \delta^*(q_0,u) = q = \delta^*(q_0,u'), dann muss auch w' = u'v \in L
```





#### DFA's haben endliches Gedächtnis

- n Sehr sympathisch
  - n kennen wir alle
  - n aber was bedeutet das genau?
- n Beispiel: A soll  $L_{anbn} = \{ a^n b^n \mid n \ge 0 \}$  erkennen.
- n Intuitiv:
  - Geht nicht, denn nachdem k viele a's eingelesen sind, müsste er sich Automat k "gemerkt" haben, um nach der richtigen Anzahl von b's in einen Endzustand zu gehen.
  - Er kann sich aber nur endlich viele verschiedene Informationen merken.
    - n meint: Er kann nicht für jedes k∈ Nat in einem anderen Zustand sein
- n mathematisch:
  - $\exists \ i \neq k \colon \delta^*(q_0, a^i) = q = \delta(q_0, a^k) = q.$   $\text{n einerseits} \colon \qquad \delta^*(q, b^i) = \delta^*(\delta^*(q_0, a^i), b^i) = \delta^*(q_0, a^i b^i) \in F \text{ sein}$   $\text{n andererseits} \colon \qquad \delta^*(q, b^i) = \delta^*(\delta^*(q_0, a^k), b^i) = \delta^*(q_0, a^k b^i) \notin F \text{ sein}$
  - " Widerspruch!
  - Also gibt es keinen endlichen Automaten, der L<sub>anbn</sub> erkennt



## Intuition liefert Anfangsverdacht

- n Mit der Intuition kann man gut fundierte Vermutungen anstellen, z.B. dass folgende Sprachen nicht von endlichen Automaten akzeptiert werden können:
  - L =  $\{a^ib^k \mid i\neq k\}$  nicht L(A) für DFA A
    - Nach i vielen a's müsste A sich deren Anzahl gemerkt haben, damit er i viele b's nicht akzeptiert wohl aber jede andere Anzahl
  - L = {  $u^Ru \mid u \in \Sigma^*$  } Palindrome
  - L = Menge aller wohlgeformten Klammerausdrücke
  - "  $L = \{ a^{n*n} \mid n \ge 0 \}$ 
    - n klein bisschen schwieriger zu argumentieren



- n Die Intuition liefert aber nur Anfangsverdacht
- n Wir lernen zwei mathematische Beweismethoden kennen:
  - Nerode Lemma
  - Pumping Lemma

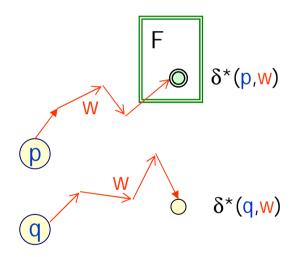
## THE STATE OF THE S

#### Trennbare Zustände

Zustände p und q heißen trennbar, wenn es ein Wort w gibt mit  $\delta^*(p,w) \in F$  aber  $\delta^*(q,w) \notin F$ , oder umgekehrt  $\delta^*(p,w) \notin F$  und  $\delta^*(q,w) \in F$ .

- n Zustände p, q sind also nicht trennbar wenn  $\forall w \in \Sigma^*$ :  $(\delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F)$
- n Definition:  $p \sim_{\Delta} q :\Leftrightarrow p$  und q sind nicht trennbar.
- n ~A ist eine Äquivalenzrelation:

```
p \sim_A q \wedge q \sim_A r \Rightarrow p \sim_A r - analog
```



# THE PARTY OF THE P

#### ~<sub>A</sub> ist Kongruenz

Auf jedem Automaten A=(Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) ist  $\sim_A$  eine Kongruenzrelation.

Beweis: ~A ist Äquivalenzrelation - klar.

#### Kongruenz:

```
\begin{array}{lll} \mathsf{q} \sim_\mathsf{A} \mathsf{q}' \implies \forall \ \mathsf{w} \in \Sigma^* \colon \left( \ \delta^*(\mathsf{q},\mathsf{w}) \in \mathsf{F} \Leftrightarrow \delta^*(\mathsf{q}',\mathsf{w}) \in \mathsf{F} \right) & \text{$//\mathrm{Def. von} \sim$} \\ \implies \forall \ \mathsf{a} \in \Sigma \colon \forall \ \mathsf{v} \in \Sigma^* \colon \left( \ \delta^*(\mathsf{q},\mathsf{av}) \in \mathsf{F} \Leftrightarrow \delta^*(\mathsf{q}',\mathsf{av}) \in \mathsf{F} \right) & \text{$//\mathrm{Setze w} = \mathsf{av}$} \\ \implies \forall \ \mathsf{a} \in \Sigma \colon \forall \ \mathsf{v} \in \Sigma^* \colon \left( \ \delta^*(\delta(\mathsf{q},\mathsf{a}),\mathsf{v}) \in \mathsf{F} \Leftrightarrow \delta^*(\delta(\mathsf{q}',\mathsf{a}),\mathsf{v}) \in \mathsf{F} \right) & \text{$//\mathrm{Def. von} \sim$} \\ \implies \forall \ \mathsf{a} \in \Sigma \colon \delta(\mathsf{q},\mathsf{a}) \sim_\mathsf{A} \delta(\mathsf{q}',\mathsf{a}) & \text{$//\mathrm{Def. von} \sim$} \end{array}
```

#### Folgerung:

$$L(A) = L(A/\sim)$$



#### ~A ist größte Kongruenz

```
R sei Relation mit
     1. p R q \Rightarrow (p \in F \land q \in F) \lor (p \notin F \land q \notin F) \text{ d.h. } (p \in F \Leftrightarrow q \in F)
     2. p R q \Rightarrow \forall a \in \Sigma: \delta(p,a) R \delta(p,a)
dann gilt R ⊆ ~A
Beweis: Sei p R q. Wir müssen zeigen:
      \forall w \in \Sigma^* : (\forall p, q \in Q : p R q \Rightarrow \delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)
Induktionshyp.: P(w): \forall p,q \in Q: p R q \Rightarrow (\delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F)
Induktionsanfang w = \varepsilon:
     \delta^*(p, \varepsilon) \in F \iff p \in F \iff q \in F \iff \delta^*(q, \varepsilon) \in F.
                                                                       // Def \delta^* u. Ax. 1 für R
Induktionsschritt w = a.v :
     Sei \forall p,q \in Q. p R q \Rightarrow (\delta^*(p,v) \in F \Leftrightarrow \delta^*(q,v) \in F) // die Ind.hypothese
                                                                        // Def. δ*
     dann \delta^*(p,a,v) \in F \iff \delta^*(\delta(p,a),v) \in F
                                           \Leftrightarrow \delta^*(\delta(q,a), v) \in F // Ax. 2 für R u. Ind.Hyp.
                                                                                      // für \delta(p,a), \delta(q,a), v
                                           \Leftrightarrow \delta^*(q,a.v) \in F
                                                                                      // Def. \delta^*
```

Folgerungen:  $\sim_A$  ist größte Relation mit den Axiomen 1. und 2. Jede Kongruenz  $\Theta$  ist in  $\sim_A$  enthalten.

### Zustände in A/~A sind trennbar

In A/~ sind je zwei verschiedene Zustände trennbar.

```
Beweis: Gegeben [p]~ und [q]~ aus A/~. (Wir schreiben ~ statt ~<sub>\(\Delta\)</sub>)
[p] \sim \neq [q] \sim \Rightarrow \neg (p \sim q)
                                                                                                                    // Def [ ]~
                              \Rightarrow \exists w \in \Sigma^*: (\delta^*(p,w) \in F \land \delta^*(q,w) \notin F) // Def
     (o.B.d.A.)
                               \Rightarrow \pi (\delta^*(p,w)) \in F \land \pi (\delta^*(q,w)) \notin F //\pi Homo.
                               \Rightarrow \delta_{\sim}^*(\pi_{\sim}(p), w) \in F_{\sim} \wedge \delta_{\sim}^*(\pi_{\sim}(q), w) \notin F_{\sim} // \pi_{\sim} \text{ Homo.}
                               \Rightarrow \delta_{\tilde{a}}^*([p]_{\tilde{a}}, w) \in F_{\tilde{a}} \wedge \delta_{\tilde{a}}^*([q]_{\tilde{a}}, w) \notin F_{\tilde{a}} // \operatorname{Def} \pi_{\Theta}
                               \Rightarrow [p]~ und [q]~ trennbar
                                                                                                                   // Def. trennbar
```

#### Zusammenfassung

Zu jedem Automaten A gibt es einen Automaten A mit

- n jeder Zustand von A ist erreichbar
- n je zwei Zustände von A sind trennbar
- n  $L(A) = L(A_{\sim})$

#### Beweis:

Entferne von A alle nichterreichbaren Zustände. Für den entstandenen Automaten  $\hat{A}$  gilt:  $L(A)=L(\hat{A})$ .

Setze  $A_{\sim} := \hat{A}/_{\hat{A}}$ . Verifiziere:

- Jeder Zustand in A<sub>z</sub> ist erreichbar
- Je zwei Zustände in A<sub>z</sub> sind trennbar
- $L(A) = L(A_{\sim}).$



#### L-trennbar

Sei L eine Sprache. Zwei Worte u,  $v \in \Sigma^*$  heißen L-trennbar, falls es ein  $w \in \Sigma^*$  gibt mit uw  $\in L$  aber  $vw \notin L$ , oder umgekehrt.

```
Beispiel: L = { 0, 010, 0110, 01110 }
n u = 0 und v = 01 sind L-trennbar mit Hilfe von w = 0,
denn 00 ∉ L aber 010 ∈ L
n 01 und 011 sind nicht L-trennbar.
```

Beobachtung: Sind  $u, v \in \Sigma^*$  L-trennbar mittels  $w \in \Sigma^*$ , dann muss

- n wein Suffix
- u oder v ein Präfixeines Wortes aus L sein

#### L-trennbar ≅ A-trennbar

<u>Lemma</u>: Ist L eine Sprache und A ein Automat mit L=L(A). Zwei Worte u,  $v \in \Sigma^*$  sind genau dann L-trennbar, wenn die Zustände  $\delta^*(q_0,u)$  und  $\delta^*(q_0,v)$  A-trennbar sind.

```
Beweis: u und v seien L-trennbar, dann gibt es w \in \Sigma^* mit uw \in L aber vw \notin L \Leftrightarrow \delta^*(q_0, uw) \in F aber \delta^*(q_0, vw) \notin F //L=L(A) \Leftrightarrow \delta^*(\delta^*(q_0, u), w) \in F aber \delta^*(\delta^*(q_0, v), w) \notin F
```

#### Nerode-Lemma

Nerode: L sei eine Sprache. Gibt es n Worte, die paarweise L-trennbar sind, so hat jeder Automat, der L erkennt, mindestens n verschiedene Zustände.



Anil Nerode \*1956

#### n <u>Beweis:</u>

```
w_1, ..., w_n \in \Sigma^* paarweise L-trennbar und L=L(A) // Voraussetzung 
 \Rightarrow \delta^*(q_0, w_1), ..., \delta^*(q_0, w_n) A-trennbar // Lemma 
 \Rightarrow \delta^*(q_0, w_1), ..., \delta^*(q_0, w_n) paarweise verschieden // p,q trennbar \Rightarrow p \neq q 
 \Rightarrow A hat mindestens n verschiedene Zustände // q.e.d.
```

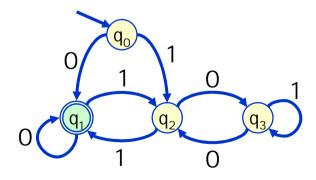
#### Anwendungen des Nerode-Lemmas

n L<sub>drei</sub>= { 0, 00, 11, 011, 110, 1001, ... } = alle Binärzahlen, die durch 3 teilbar sind.

Eine trennbare Menge mit 4 Elementen ist z.B.  $\{ \epsilon, 0, 1, 10 \}$ :

Folglich hat jeder Automat, der L<sub>drei</sub> erkennt mindestens 4 Elemente

| trennt | 3 | 0 | 1 | 10 |
|--------|---|---|---|----|
| 3      |   | 3 | 1 | 01 |
| 0      |   |   | 0 | O  |
| 1      |   |   |   | 1  |
| 10     |   |   |   |    |



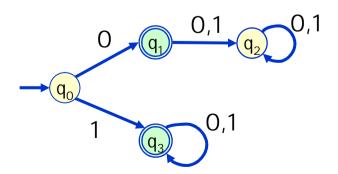
#### Nerode-Lemma

n  $L_{bin} = \{ 0, 1, 10, 11, 101, ... \} = alle Binärzahlen ohne führende Nullen$ 

```
Eine trennbare Menge mit vier Elementen ist z.B.: \{\epsilon, 0, 1, 01\} n \epsilon trennt \epsilon und 0, denn \epsilon \epsilon \notin L_{bin} aber 0\epsilon \in L_{bin} denn \epsilon \ell \notin L_{bin} aber 1\epsilon \in L_{bin} denn \epsilon \ell \ell \in L_{bin} denn \epsilon \ell \ell \in L_{bin} aber 010 \notin L_{bin} n \epsilon trennt 0 und 01, denn 0\epsilon \in L_{bin} aber 01\epsilon \notin L_{bin} denn 00\epsilon \in L_{bin} aber 01\epsilon \notin L_{bin}
```

Folglich hat jeder Automat, der L<sub>bin</sub> erkennt, mindestens 4 Zustände

| trennt | 3 | 0 | 1 | 01 |
|--------|---|---|---|----|
| 3      |   | 3 | 3 | 0  |
| 0      |   |   | 0 | 3  |
| 1      |   |   |   | 3  |
| 01     |   |   |   |    |



# THE PARTY OF THE P

#### Produktautomat

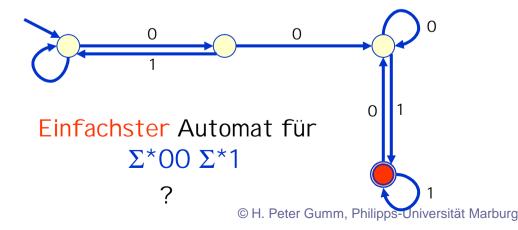
Produktkonstruktion lieferte nicht unbedingt den einfachsten Automat

- n Hier:  $\Sigma = \{0,1\}$ "  $L = L(A) \cap L(B) = \Sigma^*00 \Sigma^*1$  - Teilwort 00 und letztes Zeichen
- n Zeige, dass z.B. {ε, 0, 00, 001} eine trennbare Menge für L ist:
  - Dann muss jeder Automat für L mindestens 4 Zustände haben
- n Wie kommt man auf diese Menge?
  - Wenn man schon einen Automaten mit L=L(A) hat, gilt:

$$M=\{m_1,...,m_k\}$$
 trennbare Menge für  $L(A)$ 

$$\Leftrightarrow$$
 {  $\delta^*(q_0, m_1)$ , ...,  $\delta^*(q_0, m_k)$ } paarweise unterscheidbar

| trennt | 3 | 0  | 00 | 001 |
|--------|---|----|----|-----|
| 3      |   | 01 | 1  | 3   |
| 0      |   |    | 1  | 3   |
| 00     |   |    |    | 3   |
| 001    |   |    |    |     |



#### Klammersprache nicht endlich erkennbar

- n  $L_{kla}$  = {  $\epsilon$ , (), ()(), (()), (())(), ()(()), ()(()), ... } = Menge aller wohlgeformten Klammerausdrücke
- n Eine trennbare Menge ist z.B.:  $\{\epsilon, (, (((, ((((, ((((, ...)))))))))\}$

- Folglich hat jeder Automat, der L<sub>kla</sub> erkennt, unendlich viele Zustände
- n Es gibt keinen endlichen Automaten, der die Sprache aller wohlgeformten Klammerausdrücke erkennt !!!

| trennt | 3 | ( | (( | ((( | ((((  |    |
|--------|---|---|----|-----|-------|----|
| 3      |   | ) | )) | ))) | ))))) |    |
| (      |   |   | )) | ))) | ))))  |    |
| ((     |   |   |    | ))) | ))))  | •• |
| (((    |   |   |    |     | ))))  |    |
| (((    |   |   |    |     |       |    |

. . .



#### Palindrome nicht endlich erkennbar

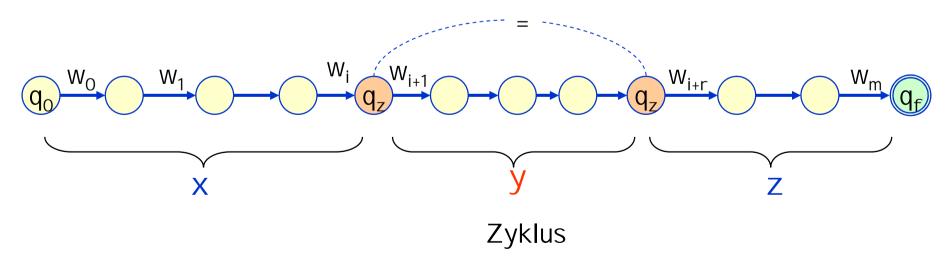
- n  $L_{pal} = \{ w^R w \mid w \in \{a,b,c\}^* \} = Menge aller Palindrome über \Sigma = \{a,b,c\}$
- n Eine trennbare Menge ist z.B.: { a<sup>n</sup>b | n ≥ 0 }, denn " für k > i ≥ 0 gilt:

```
akb<mark>bak</mark> ∈ L<sub>pal</sub> aber aib<mark>bak</mark> ∉ L<sub>pal</sub>
```

r Folglich gibt es keinen endlichen Automaten, der L<sub>pal</sub> erkennt

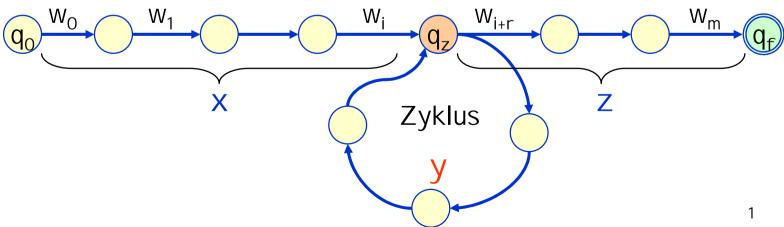
### Lange Worte in kleinen Automaten

- n A sei ein endlicher Automat mit k Zuständen
  - Ist  $w \in L(A)$  mit  $|w| \ge k$ , dann hat jeder Lauf für w einen Zyklus.
    - n Klar, weil der Lauf mindestens k+1 Zustände besucht.
    - n Es gibt aber nur k verschiedene Zustände, also muss ein Zustand mehrfach besucht werden.
  - w lässt sich zerlegen als w = xyz mit  $|xy| \le k$ ,  $|y| \ge 1$ 
    - n x: den Teil vor Beginn des ersten Zyklus, y: den Zyklus und z: den Rest.
  - dann sind aber auch  $xz \in L(A)$ ,  $xyyz \in L(A)$ , für alle  $k \ge 0$ .



## Lange Worte in kleinen Automaten

- A sei ein endlicher Automat mit k Zuständen
  - Ist  $w \in L(A)$  mit  $|w| \ge k$ , dann hat jeder Lauf für w einen Zyklus.
    - n Klar, weil der Lauf mindestens k+1 Zustände besucht.
    - n Es gibt aber nur k verschiedene Zustände, also muss ein Zustand mehrfach besucht werden.
  - w lässt sich zerlegen als w = xyz mit  $|xy| \le k$ ,  $|y| \ge 1$ 
    - $n \times z$ : den Teil vor Beginn des ersten Zyklus, y: den Zyklus und z: den Rest.
  - dann sind aber auch  $xz \in L(A)$ ,  $xyyz \in L(A)$ ,  $xyyz \in L(A)$ ,  $xy^nz \in L(A)$ , für alle  $n \ge 0$ .





## Pumping Lemma

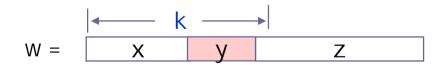
Für die Sprache L eines endlichen Automaten gibt es eine Zahl k, so dass jedes Wort  $w \in L$  mit  $|w| \ge k$  sich zerlegen lässt als

$$W = X Y Z$$

so dass

- $n \quad 0 < |y| \le |xy| \le k$
- $n \quad \forall \ n{\in}\, Nat : xy^nz \ {\in} \ L \ .$

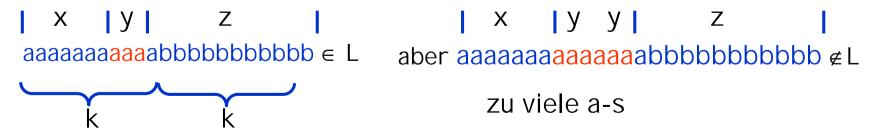
Also: jedes große ( $|w| \ge k$ ) Wort hat im vorderen Bereich ( $|xy| \le k$ ) ein nichtleeres Teilwort y, das sich "aufpumpen" lässt:



etc.

#### Beispiel

- n  $L_{anbn} = \{a^nb^n \mid n \ge 0\}$  ist nicht durch endl. Automaten erkennbar.
  - Angenommen,  $L_{anbn}$  wäre regulär. Dann gäbe es ein k wie im Pumping Lemma. Jedes k-große ( $|w| \ge k$ ) Wort  $w \in L_{anbn}$  hätte im k-vorderen Bereich ( $|xy| \le k$ ) ein nichtleeres Teilwort y, das sich "aufpumpen" lässt.
  - Wir betrachten jetzt das Wort akbk
    - 1. es ist in L<sub>anbn</sub>
    - 2. es ist k-gross (|w|=2\*k>k)
  - Es müsste im k-vorderen Bereich ein Teilwort haben, das sich aufpumpen lässt
    - n der k-vordere Bereich besteht aber nur aus a's
    - Wenn wir hier einen nichtleeren Teil y aufpumpen, bekommen wir ein Wort mit mehr a's als b's
    - $_{\rm n}$  das wäre nicht mehr in  ${\rm L_{anbn}}$  . Widerspruch!



Es gibt daher keinen endlichen Automaten A mit L<sub>anbn</sub>=L(A)

### Beispiel

n  $L_{fact} = \{a^{m!} \mid m \ge 3\}$  ist Sprache keines endl. Automaten

```
Du wählst ein k, // Allquantor n ich wähle w = a^{k!} (garantiert |w| \ge k) // Existenzquantor n du zerlegst w = a^{k!} als uzv mit |uz| \le k, |z| \ge 1 // Allquantor n dann ist uv \not\in L_{fact}, denn: // ich pumpe ab
```

sei  $|z|=j \le k$  dann ist |uv|=k!-j > (k-1)! falls  $k \ge 3$ .

Es gibt daher keinen endlichen Automaten A mit L<sub>fact</sub>=L(A)

### Beispiel

- n  $L_{diff} = \{a^mb^r \mid m \neq r\}$  ist nicht Sprache eines endl. Automaten
  - Pumping Lemma direkt anwenden?
    - n geht aber schwierig
  - Besser: Wäre  $L_{diff} = L(A)$ , dann wäre

$$L_{ambm} = (\Sigma^* - L_{diff}) \cap a^*b^*$$

auch Sprache eines endl. Automaten. Widerspruch!

Es gibt daher keinen endlichen Automaten A mit L<sub>diff</sub>=L(A)

#### Nerode ist meist einfacher

- n  $L_{diff} = \{a^m b^r \mid m \neq r \}$ 
  - $\{a^i \mid i \geq 0\}$  ist unendliche trennbare Menge
  - trenne ai von allen aj (i≠j) mittels bi

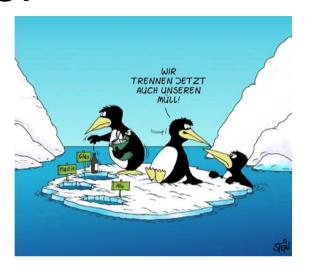
n 
$$L_{ambm} = \{ a^m b^m \mid m \ge 0 \}$$

- $\{a^i \mid i \geq 0\}$  ist unendliche trennbare Menge
- trenne ai von allen aj (i≠j) mittels bi

n 
$$L_{fact} = \{ a^{m!} \mid m \ge 0 \}$$

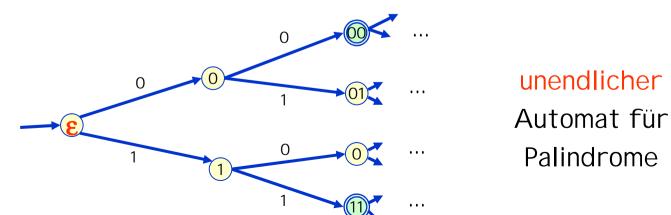
- $\{a^{n!-n} \mid n \ge 0\}$  ist unendliche trennbare Menge
- trenne a<sup>n!-n</sup> von a<sup>m!-m</sup> (n≠m) mittels a<sup>n</sup>

Es gibt daher keine endlichen Automaten A mit  $L_{fact}=L(A)$ ,  $L_{ambm}=L(A)$ ,  $L_{diff}=L(A)$ .



#### Jnendliche Automaten

- n Für jede Sprache  $L \subseteq \Sigma^*$  gibt es einen unendlichen Automaten, der L akzeptiert
  - Beweis:  $A = (\Sigma^*, \Sigma, \delta, \epsilon, L)$ , d.h.
    - n Zustände: Worte über  $\Sigma$
    - n Anfangszustand: ε
    - n Endzustände: die Worte aus L
    - n  $\delta(w,a) := wa$
  - Es folgt  $\delta^*(w,v) = wv$  für alle  $v,w \in \Sigma^*$  // Induktion
  - Dann gilt:
    - $\begin{array}{lll} \text{n} & \text{W} \in \text{L}(\text{A}) & \iff \delta^*(\epsilon, \text{w}) \in \text{L} & \text{// Def. A} \\ & \iff \epsilon \text{w} \in \text{L} & \text{// Eigenschaft } \delta^* \text{ (s.o.)} \\ & \iff \text{w} \in \text{L} & \text{// Eigenschaft } \delta^* \text{ (s.o.)} \end{array}$



## Minimalautomat

- n Aus dem bisher gezeigten folgt
  - Ist jeder Zustand in A erreichbar, dann ist A/~ ein Automat mit minimaler Anzahl von Zuständen, der die gleiche Sprache erkennt
- n Gegeben A, wie kann man A/~ konstruieren ?
  - Entferne alle nichterreichbaren Zustände
  - Berechne ~ und faktorisiere
    - n schwer, wie soll man alle  $w \in \Sigma^*$  durchprüfen?
- n Alternative:
  - Entferne alle nichterreichbaren Zustände
  - Wirf zunächst alles Zustände zusammen
  - trenne zwei Zustände p, q, falls nötig
    - n Nötig heißt: trennbar
    - n Geht effizient
    - n muss maximal Worte der Länge |Q| betrachten



#### Axiome für trennbar

n p,q trennbar  $\Leftrightarrow \neg (p \sim q)$ 

```
~ war größte Relation mit 

1. p \sim q \Rightarrow (p \in F \land q \in F) \lor (p \notin F \land q \notin F)

2. \forall a \in \Sigma: p \sim q \Rightarrow \delta(p,a) \sim \delta(q,a)
```

Mit der logischen Äquivalenz  $(x \Rightarrow y) \Leftrightarrow (\neg y \Rightarrow \neg x)$  folgt:

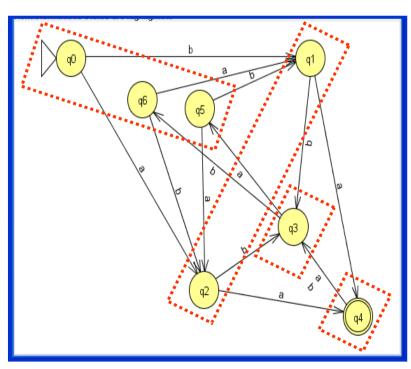
#### trennbar ist kleinste Relation mit

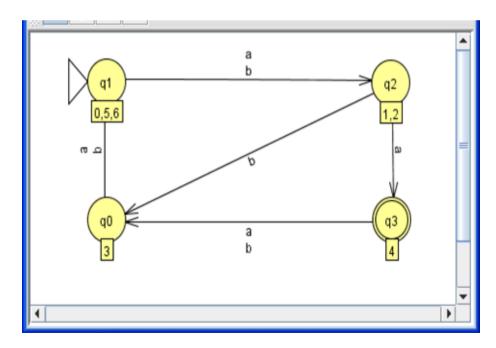
- 1.  $(p \in F \land q \notin F) \Rightarrow p, q \text{ trennbar}$
- 2.  $\forall a \in \Sigma$ :  $\delta(p,a), \delta(q,a) \text{ trennbar} \Rightarrow p,q \text{ trennbar}$

# THE PARTY OF THE P

### Minimierung

- n A/~ ist Automat mit
  - $L(A)=L(A/\sim)$
  - Unter allen Automaten B mit L(A) = L(B) hat A/~ minimale Anzahl von Zuständen
- n Wie kann man A/~ effizient konstruieren?





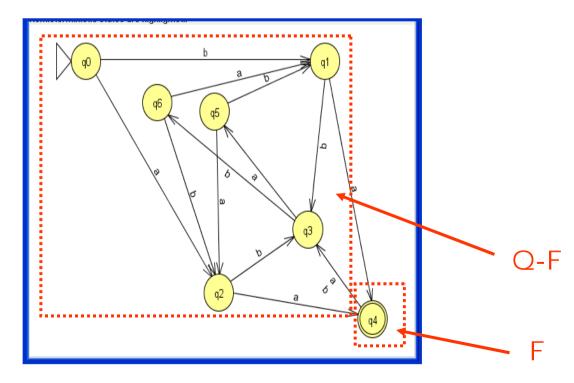
# 3

### Minimierung

- n A/~ ist Automat mit
  - $L(A)=A(A/\sim)$
  - Unter allen Automaten B mit L(A) = L(B) hat A/~ minimale Anzahl von Zuständen
- n Wie kann man A/~ effizient konstruieren ?

<u>Maxime</u>: trenne Zustände von A nur wenn notwendig

 Trenne Endzuständen von Nicht-Endzuständen



## TENTET OF THE PROPERTY OF THE

### Minimierung

- n A/~ ist Automat mit
  - $L(A)=A(A/\sim)$
  - Unter allen Automaten B mit L(A) = L(B) hat A/~ minimale Anzahl von Zuständen
- n Wie kann man A/~ effizient konstruieren?

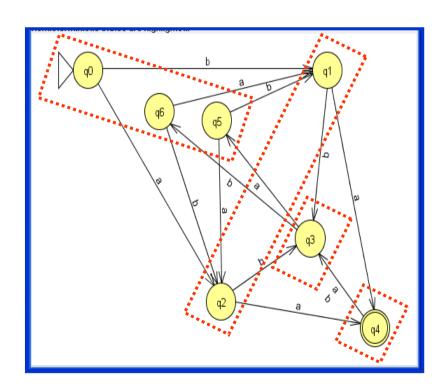
<u>Maxime</u>: trenne Zustände von A nur wenn notwendig

- Trenne Endzuständen von Nicht-Endzuständen
- 2. Wähle Zustände p,q, die noch nicht getrennt sind und  $a \in \Sigma$ . Wenn  $\delta(p,a)$ ,  $\delta(q,a)$  schon getrennt, dann trenne auch p von q.

$$\{p \in Q \mid \delta(p,a) \in F\}$$
 
$$\{p \in Q \mid \delta(p,a) \in Q - F\}$$

# Minimierung

- n A/~ ist Automat mit
  - "  $L(A)=A(A/\sim)$
  - Unter allen Automaten B mit L(A) = L(B) hat A/~ minimale Anzahl von Zuständen
- n Wie kann man A/~ effizient konstruieren?



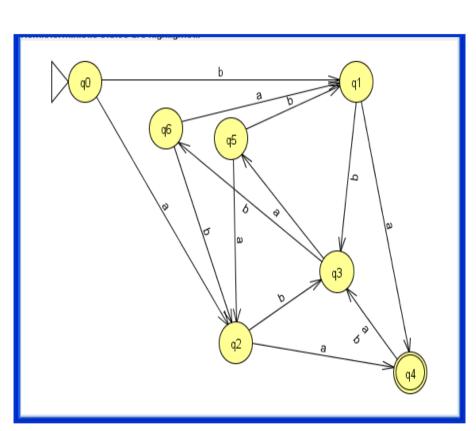
#### <u>Maxime</u>: trenne Zustände von A nur wenn notwendig

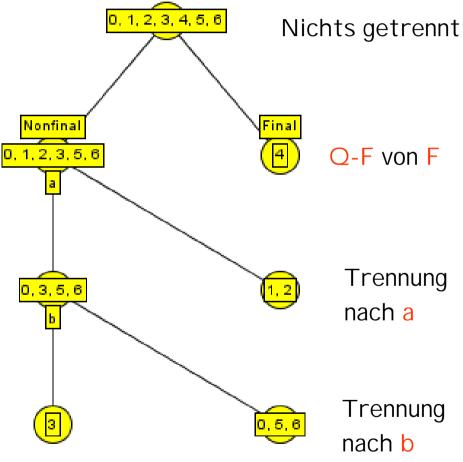
- Trenne Endzuständen von Nicht-Endzuständen
- 2. Wähle Zustände p,q, die noch nicht getrennt sind und  $a \in \Sigma$ . Wenn  $\delta(p,a)$ ,  $\delta(q,a)$  schon getrennt, dann trenne auch p von q.
- 3. Bis nichts mehr getrennt wird

## THE PARTY OF THE P

### Darstellung in JFLAP

#### Partitionsbaum



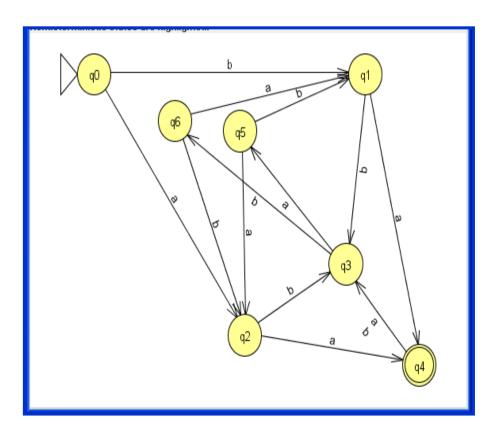


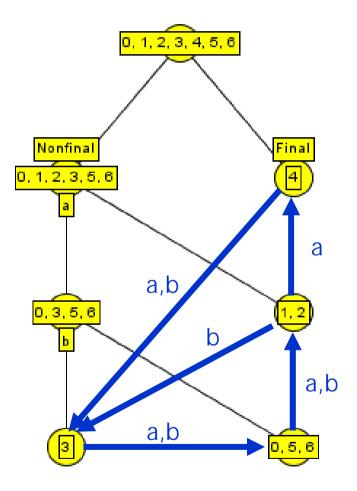
Schon fertig (Kleines Beispiel)



## Fertiger Automat

- n Die Zustände des Minimalautomaten sind die Blätter des Partitionsbaumes
- n Transitionen: Repräsentantenweise







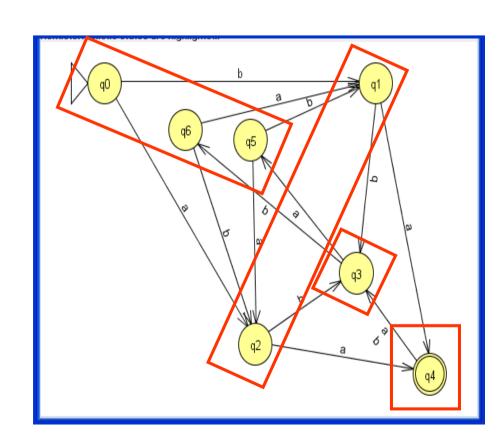
## Andere Möglichkeit: Tabelle

#### n Tabelliere Trennbarkeitsrelation



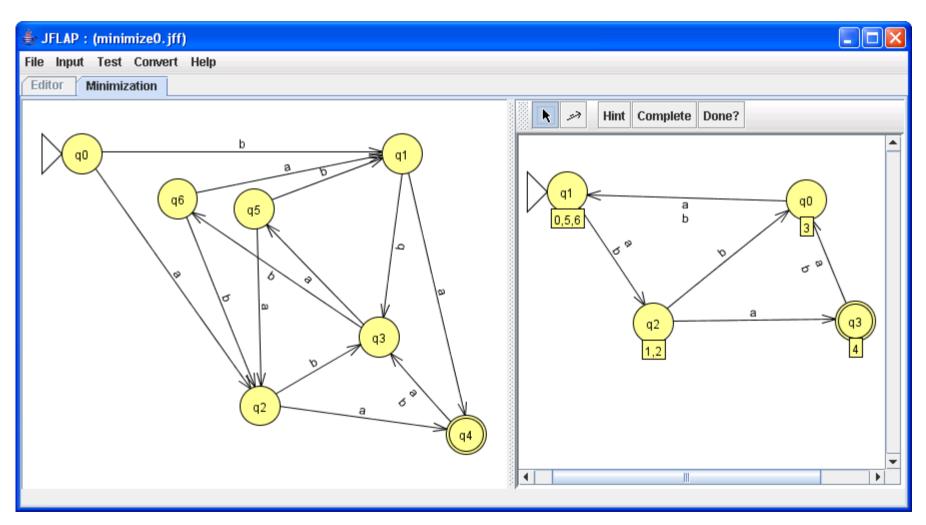
- Für alle e ∈ Σ,
   für alle p < q</li>
   Falls δ(p,a), δ(q,a) schon getrennt,
   dann trenne p und q
- Wiederhole bis eine Runde lang nichts getrennt wurde

|         | $q_0$ | $q_1$ | $q_2$ | $q_3$ | $q_4$ | $q_5$ | $q_6$ |
|---------|-------|-------|-------|-------|-------|-------|-------|
| $q_{o}$ |       | X     | Х     | X     | Χ     |       |       |
| $q_1$   |       |       |       | Χ     | Х     | Х     | Х     |
| $q_2$   |       |       |       | Χ     |       | X     |       |
| $q_3$   |       |       |       |       | Х     | Х     | Х     |
| $q_4$   |       |       |       |       |       | Χ     | Х     |
| $q_5$   |       |       |       |       |       |       |       |
| $q_6$   |       |       |       |       |       |       |       |





#### In JFLAP



#### Automaten mit Ausgabe

- n Automaten mit Ausgabe haben zusätzlich
  - ein Ausgabealphabet Г
  - eine Ausgabefunktion
    - $\begin{array}{lll} \text{n} & \text{entweder} & \gamma: Q \to \Gamma & \text{(Moore-Automat)} \\ \text{n} & \text{oder} & \gamma: Q \times \Sigma \to \Gamma & \text{(Mealy-Automat)} \end{array}$

$$\frac{a/r}{\delta(p,a) = q}$$

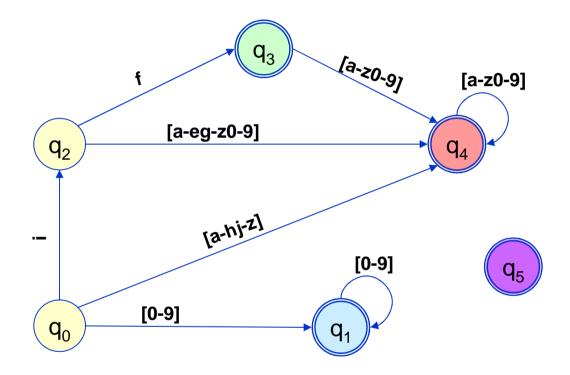
$$\gamma(p,a) = r$$

- n Automaten ohne Ausgabe heißen demgegenüber auch: Akzeptoren
- n Automaten mit Ausgabe: Transducer



#### Scanner als Automat

- Scanner: Automaten, die mehrere Sprachen erkennen
  - Jede Sprache entspricht
     Teilmenge der
     Endzustände
  - Ausgabe-Token hält fest, aus welcher Sprache das erkannte Wort ist
  - Versuche, möglichstlanges Präfix zu erkennen
  - dann wird abgeschnitten



 $q_3 \Rightarrow ifToken$ 

 $q_4 \Rightarrow identifier$ 

 $q_1 \Rightarrow num$ 

fehlende Transitionen gehen auf

$$q_5 \Rightarrow Error$$